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Abstract

This paper presents a load-dependent controller design approach to solve the problem of multi-objective
control for vehicle active suspension systems by using linear matrix inequalities. A quarter-car model with
active suspension system is considered. It is assumed that the vehicle body mass resides in an interval and
can be measured online. This approach of designing controllers, whose gain matrix depends on the online
available information of the body mass, is based on a parameter-dependent Lyapunov function. Since the
parameter-dependent idea is fully exploited, the proposed controller design approach can yield much less
conservative results compared with previous approaches that design robust constant controllers in the
quadratic framework. The usefulness and the advantages of the proposed controller design methodology
are demonstrated via numerical simulations.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Vehicle suspensions have been a hot research topic for many years due to its important role in
ride comfort, vehicle safety, road damage minimization and the overall vehicle performance. To
meet these requirements, many types of suspension systems, ranging from passive [1,2], semi-
active [3,4], to active suspensions [5,6], are currently being employed and studied. It has been well
see front matter r 2005 Elsevier Ltd. All rights reserved.
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recognized that active suspensions have a great potential to meet the tight performance
requirements demanded by users. Therefore, in recent years more and more attention has been
devoted to the development of active suspensions and various approaches have been proposed to
solve the crucial problem of designing a suitable control law for these active suspension systems
(see, for instance Refs. [7–12] and the references therein).
The linear quadratic regulator (LQR) has been used as one of the main control techniques for

dealing with active suspension design [13]. In this framework, an optimal state feedback gain
minimizing a quadratic cost function is obtained. It is noted that the model parameters are
assumed to be precisely known and the optimal control strategies may collapse in the face of some
uncertain parameters. However, a suspension system often contains parameters that are
intrinsically uncertain, such as the sprung mass, whose value is dependent on the total load of
the vehicle. Therefore, the use of robust control techniques has become a major requirement in the
further development of active suspension systems, and many useful results on robust control for
active suspension systems have been reported [14–17].
To achieve a compromise between several performance requirements for uncertain active

suspension systems, very recently a robust multi-objective controller was designed for a quarter-
car model whose system matrices are subject to parameter uncertainties characterized by a given
polytope [18]. The main objective is to use a robust state-feedback controller to achieve multiple
performance objectives for different controlled output signals. It is worth mentioning that the
solutions are given in the quadratic framework. Although being adequate to ensure stability for
systems with arbitrarily fast time-varying parameters, methods based on quadratic stability can
produce conservative results since the same parameter-independent Lyapunov function must be
used for the entire uncertainty domain. In addition, it is noted that the gain matrix for the
designed controllers keeps constant for all the uncertain parameters. However, for active
suspension systems with parameters, such as the sprung mass, that can be measured online
without difficulty, the online available information of these parameters can be utilized in the
realization of control strategy. This would generally allow less conservative designs to be
achieved.
Motivated by the above discussion, in this paper we present a load-dependent controller design

approach to solve the problem of multi-objective control for vehicle active suspension systems. A
quarter-car model with active suspension system is considered and the linear matrix inequality
(LMI) technique is employed to cast the controller designs into convex optimizations. It is
assumed that the vehicle body mass (whose value changes with the vehicle load) resides in an
interval and can be measured online. This approach of designing controllers, whose gain matrix
depends on the online available information of the body mass, is based on a parameter-dependent
Lyapunov function. Since the parameter-dependent idea is fully exploited, the proposed controller
design approach can yield much less conservative results compared with previous approaches that
design robust constant controllers in the quadratic framework. The usefulness and advantage of
the proposed controller design methodology are demonstrated via numerical simulations.
The remainder of this paper is organized as follows. The problem of multi-objective load-

dependent controller design for uncertain active suspension systems is formulated in Section 2.
Sections 3 presents controller synthesis results by using LMI techniques. A design example
illustrating the usefulness and advantage of the proposed methodology is given in Section 4 and
we conclude the paper in Section 5.
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Notations: The superscript T stands for matrix transposition; Rn denotes the n-dimensional
Euclidean space, Rm� n is the set of all m� n real matrices and the notation P40 means that P is
symmetric and positive definite; I and 0 represent identity matrix and zero matrix; the notation
|| � || refers to the Euclidean vector norm. In addition, in symmetric block matrices or long matrix
expressions, we use � to represent a block in a matrix that is induced by symmetry and f� � �g
stands for a block-diagonal matrix. For simplicity, we use sym(M) to represent M+MT. Matrices,
if their dimensions are not explicitly stated, are assumed to be compatible for algebraic
operations.
2. Problem formulation

Consider the quarter-car model shown in Fig. 1, which has been used extensively in the
literature due to its simplicity while capturing many essential characteristics of a real suspension
system. In this figure, ms is the sprung mass, which represents the car chassis whose value changes
with the vehicle load; mu is the unsprung mass, which represents mass of the wheel assembly; ks

and cs are stiffness and damping of the uncontrolled suspension, respectively; kt serves to model
the compressibility of the pneumatic tire; zs and zu are the displacements of the sprung and
unsprung masses, respectively; zr is the road displacement input; u is the active input of the
suspension system.
The ideal dynamic equations for the sprung and unsprung masses of the quarter-car model are

given by

ms €zsðtÞ þ cs _zsðtÞ � _zuðtÞ½ � þ ks zsðtÞ � zuðtÞ½ � ¼ uðtÞ,

mu €zuðtÞ þ cs _zuðtÞ � _zsðtÞ½ � þ ks zuðtÞ � zsðtÞ½ � þ kt zuðtÞ � zrðtÞ½ � ¼ �uðtÞ. ð1Þ
z r 

z u 

z s 

kt 

ks ucs 

ms

mu 

Car Body 

Suspension 

Wheel 

Tire 

Fig. 1. Quarter-car model with an active suspension.
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It can be seen from Fig. 1 that the disturbance input of the system is the road displacement zr,
which can be represented by [18,19]:

_zrðtÞ ¼ 2pq0
ffiffiffiffiffiffiffiffiffiffi
G0V

p
wðtÞ, (2)

where G0 stands for the road roughness coefficient, q0 is the reference spatial frequency, V is the
vehicle forward velocity, w(t) is zero-mean white noise with identity power spectral density.
As is mentioned previously, the body mass ms usually changes with the vehicle load.

Throughout the paper, it is assumed that the vehicle body mass resides in an interval and can be
measured online, that is,

m1pmspm2. (3)

Choose the following set of state variables:

x1ðtÞ ¼ zsðtÞ � zuðtÞ; x2ðtÞ ¼ zuðtÞ � zrðtÞ; x3ðtÞ ¼ _zsðtÞ; x4ðtÞ ¼ _zuðtÞ, (4)

where x1ðtÞ is the suspension deflection, x2ðtÞ is the tire deflection, x3ðtÞ is the sprung mass speed,
and x4ðtÞ is the unsprung mass speed.
Then, by defining xðtÞ9½x1ðtÞ x2ðtÞ x3ðtÞ x4ðtÞ�

T, the dynamic equations in Eq. (1) can be
written in the following state-space form:

_xðtÞ ¼ AðmsÞxðtÞ þ BðmsÞuðtÞ þ BwðmsÞwðtÞ, (5)

where

AðmsÞ ¼

0 0 1 �1

0 0 0 1

�ks=ms 0 �cs=ms cs=ms

ks=mu �ku=ms cs=ms �cs=ms

2
666664

3
777775,

BðmsÞ ¼

0

0

1=ms

�1=mu

2
666664

3
777775; BwðmsÞ ¼

0

�2pq0
ffiffiffiffiffiffiffiffiffiffi
G0V
p

0

0

2
666664

3
777775. ð6Þ

It is worth mentioning that as the body mass ms usually changes with the vehicle load, which
can be measured online, we express the system matrices of the quarter-car model as functions of
ms.
In designing the control law for a suspension system, usually we need to take the following

aspects into consideration:
(1)
 Ride comfort: It is well-known that ride comfort is an important performance for vehicle
design, which is usually evaluated by the body acceleration in the vertical direction. Therefore,
in the controller design, one of our main objectives is to minimize the vertical body
acceleration €zsðtÞ, that is,

min €zsðtÞ. (7)
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Road holding ability: In order to ensure a firm uninterrupted contact of wheels to road, the
(2)

dynamic tire load should not exceed the static ones [20], that is,

kuðzu � zrÞo9:8ðms þmuÞ. (8)

By considering Eq. (3), Eq. (8) holds if

kuðzu � zrÞo9:8ðm1 þmuÞ. (9)
(3)
 Maximum suspension deflection: Because of the constraint of mechanical structure, the
maximum allowable suspension stroke has to be taken into consideration to prevent excessive
suspension bottoming, which can possibly result in deterioration of ride comfort and even
structural damage. The requirement is

jzsðtÞ � zuðtÞjpzmax, (10)

where zmax is the maximum suspension deflection.

(4)
 Saturation effect of actuator: In view of the limited power of the hydraulic actuator, the active

force for the suspension system should be confined to a certain range, that is,

juðtÞjpumax. (11)
It is not difficult to see that the latter three requirements are actually constraints, while only the
first one needs to be minimized. In other words, the strategy in designing control law for
suspension systems is to minimize the vertical body acceleration €zsðtÞ while keeping the other three
requirements satisfied.
According to the above four requirements, we define the following output variables:

z1ðtÞ ¼ €zsðtÞ,

z2ðtÞ ¼ zsðtÞ � zuðtÞð Þ=zmax,

z3ðtÞ ¼ kuðzuðtÞ � zrðtÞÞ=9:8ðm1 þmuÞ,

z4ðtÞ ¼ uðtÞ=umax. ð12Þ

Therefore, the vehicle suspension system can be described by the following state-space
equation:

_xðtÞ ¼ AðmsÞxðtÞ þ BðmsÞuðtÞ þ BwðmsÞwðtÞ,

zlðtÞ ¼ ClðmsÞxðtÞ þDlðmsÞuðtÞ; l ¼ 1; . . . ; 4, ð13Þ

where A(ms), B(ms), Bw(ms) are defined in Eq. (6), and

C1ðmsÞ ¼ ½�ks=ms 0 � cs=ms cs=ms�; D1ðmsÞ ¼ 1=ms,

C2ðmsÞ ¼ ½1=zmax 0 0 0�; D2ðmsÞ ¼ 0,

C3ðmsÞ ¼ ½0 ku=9:8ðm1 þmuÞ 0 0�; D3ðmsÞ ¼ 0,

C4ðmsÞ ¼ ½0 0 0 0�; D4ðmsÞ ¼ 1=umax. ð14Þ
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It is not difficult to see that the system matrices which are dependent on the body mass ms can
be expressed as

AðmsÞ;BðmsÞ;BwðmsÞ;ClðmsÞ;DlðmsÞð Þ ¼
X2
i¼1

ai Ai;Bi;Bwi;Cli;Dlið Þ,

aiX0; a1 þ a2 ¼ 1, ð15Þ

where

A1;B1;Bw1;Cl1;Dl1ð Þ ¼ AðmsÞ;BðmsÞ;BwðmsÞ;ClðmsÞ;DlðmsÞð Þ
��
ms¼m1

,

A2;B2;Bw2;Cl2;Dl2ð Þ ¼ AðmsÞ;BðmsÞ;BwðmsÞ;ClðmsÞ;DlðmsÞð Þ
��
ms¼m2

.

Moreover, the relationship between the vector a9 a1; a2ð Þ and the online measurable body mass ms

is given by

a1 ¼
1

ms

�
1

m2

� ��
1

m1
�

1

m2

� �
; a2 ¼

1

m1
�

1

ms

� ��
1

m1
�

1

m2

� �
. (16)

Now we have used a two-vertex polytope to describe the load-dependent system matrices. The
polytope description has been used in many references (see, for instance, [21] and [22]). As the
vehicle load can be measured online easily, we can get the vector (a1, a2) according to the available
ms based on Eq. (16).
For the active suspension system (13), Ref. [18] designs a state-feedback control law of the

following form:

uðtÞ ¼ KxðtÞ, (17)

where K is a constant feedback gain to be determined. This robust control approach to achieve
multi-objective performances deserves some remarks:
(1)
 The controller design presented in Ref. [18] is based on the notion of quadratic stability. That
is, for the entire uncertainty polytope, a fixed Lyapunov function is required to satisfy a set of
LMI conditions. Such treatment has been well recognized to be conservative, and an advanced
research topic in robust control is to utilize parameter-dependent Lyapunov functions.
(2)
 In the design example in Ref. [18], the considered uncertain parameter is the sprung mass ms,
whose value depends on the total value of the load. It is noted that the designed controller has
a constant gain matrix K, which is used for all possible values of body mass ms. In fact, the
body mass ms is usually not difficult to obtain online, thus if the controller gain can change
according to the online available value of ms, better performance may be achieved.
Based on the above points, we consider the following controller structure:

uðtÞ ¼ KðmsÞxðtÞ, (18)

where K(ms) is a gain matrix function to be determined. Our purpose is to investigate the design of
the controller (18) based on parameter-dependent Lyapunov functions. Since the controller design
presented here does not belong to those commonly used robust control approaches, and is
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essentially different from those in the quadratic framework, we call Eq. (18) a load-dependent

controller.
By applying controller (18) to the suspension system (13), we obtain the following closed-loop

system:

_xðtÞ ¼ ĀðmsÞxðtÞ þ BwðmsÞwðtÞ,

zlðtÞ ¼ C̄lðmsÞxðtÞ; l ¼ 1; . . . ; 4, ð19Þ

where

ĀðmsÞ9AðmsÞ þ BðmsÞKðmsÞ,

C̄lðmsÞ9 ClðmsÞ þDlðmsÞKðmsÞ½ �; l ¼ 1; . . . ; 4. ð20Þ

Then, the transfer functions from the disturbance signal to the controlled outputs are given by

TlðsÞ ¼ C̄lðmsÞ sI � ĀðmsÞ
� ��1

BwðmsÞ; l ¼ 1; . . . ; 4. (21)

Similar to Ref. [18], we also introduce the H2 and GH2 (generalized H2, also called L2-LN [23])
performances to evaluate the controlled outputs zjðtÞ. Based on the aforementioned requirements
for control design, the problem to be solved in this paper can be summarized as follows:

2.1. Problem load-dependent suspension control (LDSC)

Given an active suspension system (13), design a load-dependent controller in the form of Eq.
(18) via the following minimization problem:

min g1 s:t:

T1ðsÞ
�� ��

2
pg1;

TlðsÞ
�� ��

G
pgl ; l ¼ 2; 3; 4;

OC;

8><
>:

where gl is a given constant,

T1ðsÞ
�� ��

2
9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2p

Z 1
�1

Tr T�1ðjoÞT1ðjoÞdo

s
,

TlðsÞ
�� ��

G
9 sup zlðtÞ

�� �� : xð0Þ ¼ 0; tX0;

Z t

0

oðtÞ
�� ��dtp1

	 


and OC represents other constraints, such as pole constraints of the closed-loop system. The
proposed control system diagram is given in Fig. 2.

Remark 1. It is worth mentioning that the control strategy proposed above is much different from
the standard PID control, as seen in the following two aspects:
(1)
 In the standard PID controller design, it is often difficult to take the variation of the body
mass ms into consideration, which is dependent on the vehicle load. However, in the control
strategy proposed above, the body mass ms is assumed to reside in an interval, which
characterizes the real situation more precisely.
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Fig. 2. Control system diagram.
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(2)
 In the control strategy proposed above, the multiple requirements (including ride comfort,
road holding ability, suspension deflection limit and saturation effect of actuator) are
formulated in a unified framework, based on which the controller design is cast into a
multiple-objective minimization problem. However, in the standard PID controller design, we
are usually difficult to take these factors into account simultaneously.
3. Load-dependent controller design

In this section, we will investigate the problem of multi-objective control through load-
dependent controllers formulated in the above section. First, according to Ref. [24], the closed-
loop system in Eq. (19) is asymptotically stable with T1ðsÞ

�� ��
2
pg1 and TjðsÞ

�� ��
G
pgl ðl ¼ 2; 3; 4Þ if

and only if there exist matrix functions PðmsÞ40 and SðmsÞ40 satisfying

Tr SðmsÞð Þog21, (22)

Ā
T
ðmsÞPðmsÞ þ PðmsÞĀðmsÞ PðmsÞBwðmsÞ

� �I

" #
o0, (23)

�SðmsÞ C̄1ðmsÞ

� �PðmsÞ

" #
o0, (24)

�g2l I C̄lðmsÞ

� �PðmsÞ

" #
o0; l ¼ 2; 3; 4. (25)

In addition, in order to obtain desired dynamics of the closed-loop systems, usually some pole
placement constraints need to be imposed. In this paper, we consider the following two kinds of
regional pole constraints [25]:
(1)
 Disk region: Let

A

ðZ; rÞ denotes any disk region centered in Z with radius r in the complex
plane ðZ; r 2 R and r40Þ. Then, all the eigenvalues of ĀðmsÞ in Eq. (19) lie in the region
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A

ðZ; rÞ if and only if there exists a matrix function PðmsÞ40 satisfying

�PðmsÞ PðmsÞ ĀðmsÞ � ZI
� �

� �r2PðmsÞ

" #
o0. (26)

Vertical strip: Let ðv;mÞ denotes a vertical strip lying within the bounds v and m (vom,
v; m 2 R). Then, all the eigenvalues of ĀðmsÞ in Eq. (19) lie in the region ðv; mÞ if and only if
there exists a matrix function PðmsÞ40 satisfying
ĀðmsÞ � mI
� �T

PðmsÞ þ PðmsÞ ĀðmsÞ � mI
� �

o0, (27)

� ĀðmsÞ � vI
� �T

PðmsÞ � PðmsÞ ĀðmsÞ � vI
� �

o0. (28)

In the multi-objective synthesis, in order to cast the controller design into convex optimization
problems, we usually need to set a common Lyapunov matrix for different performance
objectives. Thus, the closed-loop system (19) is asymptotically stable with T1ðsÞ

�� ��
2
pg1,

TlðsÞ
�� ��

G
pgl ; l ¼ 2; 3; 4, and all the eigenvalues of ĀðmsÞ lie in the region

A

ðZ; rÞ (or ðv; mÞ) if
there exist matrix functions PðmsÞ40 and SðmsÞ40 satisfying Eqs. (22)–(26) (or Eqs. (22)–(25),
(27) and (28)). Ref. [18] presents a robust controller design by setting PðmsÞ � P for the entire
uncertainty domain. In the following, we will present a new approach based on parameter-
dependent Lyapunov functions.
First define the following invertible matrix functions:

J19diag P�1ðmsÞ; I

 �

; J29diag I ;P�1ðmsÞ

 �

; J39diag P�1ðmsÞ;P
�1ðmsÞ


 �
. (29)

By performing congruence transformations to Eqs. (23)–(28) by J1, J2, J2, J3, P�1ðmsÞ, P�1ðmsÞ

respectively, and by changing the matrix variables with

P̄ðmsÞ9P�1ðmsÞ; K̄ðmsÞ9KðmsÞP
�1ðmsÞ (30)

we obtain

P̄ðmsÞA
TðmsÞ þ K̄

T
ðmsÞB

TðmsÞ þ AðmsÞP̄ðmsÞ þ BðmsÞK̄ðmsÞ BwðmsÞ

� �I

" #
o0, (31)

�SðmsÞ C1ðmsÞP̄ðmsÞ þD1ðmsÞK̄ðmsÞ

� �P̄ðmsÞ

" #
o0, (32)

�glI ClðmsÞP̄ðmsÞ þDlðmsÞK̄ðmsÞ

� �P̄ðmsÞ

" #
o0; l ¼ 2; 3; 4, (33)

�P̄ðmsÞ AðmsÞ � ZIð ÞP̄ðmsÞ þ BðmsÞK̄ðmsÞ

� �r2P̄ðmsÞ

" #
o0, (34)

P̄ðmsÞ AðmsÞ � mIð Þ
T
þ AðmsÞ � mIð ÞP̄ðmsÞ þ K̄

T
ðmsÞB

TðmsÞ þ BðmsÞK̄ðmsÞo0, (35)
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�P̄ðmsÞ AðmsÞ � vIð Þ
T
� AðmsÞ � vIð ÞP̄ðmsÞ � K̄

T
ðmsÞB

TðmsÞ � BðmsÞK̄ðmsÞo0. (36)

Eqs. (22), (31)–(34) are the conditions for the existence of admissible controllers with disk pole
constraint, and Eqs. (22), (31)–(33), (35), (36) are the conditions for the existence of admissible
controllers with vertical strip pole constraint. From Eq. (30) we know that if there exist matrix
functions P̄ðmsÞ, SðmsÞ and K̄ðmsÞ satisfying the above required conditions, the gain matrix
function for an admissible controller in the form of Eq. (18) can be given by

KðmsÞ9K̄ðmsÞP̄
�1
ðmsÞ. (37)

It is noted that for fixed ms, conditions (22), (31)–(36) are LMIs, which can be readily solved via
standard numerical software. However, these conditions cannot be implemented due to their
infinite-dimensional nature in the parameter ms. Our purpose hereafter is to transform these
conditions into tractable LMI-based conditions.
According to the inner property of the polytopic uncertain systems, we assume the matrix

functions P̄ðmsÞ, SðmsÞ and K̄ðmsÞ in Eqs. (22), (31)–(36) to be of the following form:

P̄ðmsÞ ¼
X2
i¼1

aiP̄i; SðmsÞ ¼
X2
i¼1

aiSi; K̄ðmsÞ ¼
X2
i¼1

aiK̄ i. (38)

Then, Eq. (22) holds if

Tr Sið Þog21; i ¼ 1; 2. (39)

In addition, it is not difficult to rewrite Eq. (31) in the following form:

XðmsÞ9
sym AðmsÞP̄ðmsÞ þ BðmsÞK̄ðmsÞ

� �
BwðmsÞ

� �I

" #

¼
X2
j¼1

X2
i¼1

aiajXij ¼
X2
j¼1

a2i Xi þ a1a2X12,

where

Xij9
P̄iA

T
j þ K̄

T
i BT

j þ AjP̄i þ BjK̄i Bwj

� �I

" #
.

Therefore, Eq. (31) holds if

P̄iA
T
i þ K̄

T
i BT

i þ AiP̄i þ BiK̄i � ~Aii Bwi � ~Bii

� �I � ~Dii

" #
o0; i ¼ 1; 2, (40)

sym A2P̄1 þ B2K̄1 þ A1P̄2 þ B1K̄2 � ~A12

� �
Bw2 þ Bw1 � ~B12 � ~C

T

12

� �2I � ~D12 � ~D
T

12

2
4

3
5p0, (41)
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~A11
~B11

� ~D11

" #
~A12

~B12

~C12
~D12

" #

�
~A22

~B22

� ~D22

" #
2
666664

3
777775o0. (42)

By using similar techniques, it can be established that Eq. (32) holds if

�Si � ~Eii C1iP̄i þD1iK̄ i � ~Fii

� �P̄i � ~Hii

" #
o0; i ¼ 1; 2, (43)

�S1 � S2 � ~E12 � ~E
T

12 C12P̄1 þD12K̄1 þ C11P̄2 þD11K̄2 � ~F12 � ~G
T

12

� �P̄1 � P̄2 � ~H12 � ~H
T

12

2
4

3
5p0, (44)

~E11
~F11

� ~H11

" #
~E12

~F12

~G12
~H12

" #

�
~E22

~F22

� ~H22

" #
2
666664

3
777775o0. (45)

Eq. (33) holds if

�g2l I � ~I lii CliP̄i þDliK̄ i � ~Jlii

� �P̄i � ~Llii

" #
o0; i ¼ 1; 2; l ¼ 2; 3; 4, (46)

�2g2l I � ~I l12 � ~I
T

l12 Cl2P̄1 þDl2K̄1 þ Cl1P̄2 þDl1K̄2 � ~Jl12 � ~K
T

l12

� �P̄1 � P̄2 � ~Ll12 � ~L
T

l12

2
4

3
5p0; l ¼ 2; 3; 4, (47)

~I l11
~Jl11

� ~Ll11

" #
~I l12

~Jl12

~Kl12
~Ll12

" #

�
~I l22

~Jl22

� ~Ll22

" #
2
666664

3
777775o0; l ¼ 2; 3; 4. (48)

Eq. (34) holds if

�P̄i � ~Mii Ai � ZIð ÞP̄i þ BiK̄i � ~Nii

� �r2P̄i � ~Pii

" #
o0; i ¼ 1; 2, (49)

�P̄1 � P̄2 � ~M12 � ~M
T

12 A2 � ZIð ÞP̄1 þ B2K̄1 þ A1 � ZIð ÞP̄2 þ B1K̄2 � ~N12 � ~O
T

12

� �r2P̄1 � r2P̄2 � ~P12 � ~P
T

12

2
4

3
5p0, (50)
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~M11
~N11

� ~P11

" #
~M12

~N12

~O12
~P12

" #

�
~M22

~N22

� ~P22

" #
2
666664

3
777775o0. (51)

Eq. (35) holds if

P̄i Ai � mIð Þ
T
þ Ai � mIð ÞP̄i þ K̄

T
i BT

i þ BiK̄i � ~Qiio0; i ¼ 1; 2, (52)

sym A2 � mIð ÞP̄1 þ B2K̄1 þ A1 � mIð ÞP̄2 þ B1K̄2 � ~Q12

� �
p0, (53)

~Q11
~Q12

� ~Q22

" #
o0. (54)

Eq. (36) holds if

�P̄i Ai � vIð Þ
T
� Ai � vIð ÞP̄i � K̄

T
i BT

i � BiK̄i � ~Riio0; i ¼ 1; 2, (55)

sym � A2 � vIð ÞP̄1 � B2K̄1 � A1 � vIð ÞP̄2 � B1K̄2 � ~R12

� �
p0, (56)

~R11
~R12

� ~R22

" #
o0. (57)

Now, we have transformed conditions (22), (31)–(36) into a set of LMI conditions. Based on
these conditions, the multi-objective load-dependent controller design in Problem LDSC can be
solved via the following convex optimization problem:

min g1 s:t: ð39Þ2ð48Þ and OC; (58)

where OC refers to the pole placement constraints (49)–(51) (disk region) or (52)–(57) (vertical
strip region). If the optimization problem (58) has a set of feasible solutions, by substituting the
matrix functions (38) into (37), the feedback gain matrix function for controller (18) can be given
by

KðmsÞ ¼
X2
i¼1

aiK̄ i

 ! X2
i¼1

aiP̄i

 !�1
. (59)

Remark 2. The obtained controller gain matrix function in Eq. (59) based on the convex
optimization problem (58) is nonlinearly dependent on the vector a (consequently nonlinearly
dependent on ms), which constitutes the essential difference from previous constant gain
controller design.
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Remark 3. As can be seen in the above derivation process, the Lyapunov matrices for any given
body mass ms can be given by

PðmsÞ ¼
X2
i¼1

aiP̄i

 !�1

which is also dependent on the parameter ms.
4. A design example

In this section, we use an example to illustrate the usefulness and advantage of the load-
dependent controller design method proposed in the above sections. Model parameters are
borrowed from Ref. [20] and listed in Table 1. The values listed in Table 1 are for the nominal
system. We assume that the sprung mass ms changes with the vehicle load, which is expressed as

ms ¼ 320þ lð Þkg;

where l is a parameter satisfying lj jpl̄. In this case, the state-space model (13) can be represented
by a two-vertex polytope.
First, assume that l̄ ¼ 64 kg (that is, the sprung mass ms fluctuates around its nominal value by

20%). In addition, assume the maximum allowable suspension stroke zmax ¼ 0:08m, the
maximum force output umax ¼ 1000N, the road roughness coefficient G0 ¼ 512� 10�6 m3, the
reference spatial frequency q0 ¼ 0:1m�1 and the vehicle forward speed V ¼ 30m=s. Our purpose
is to design a load-dependent controller in the form of Eq. (18), such that the closed-loop system
(19) satisfies
(1)
Tab

Para

ms

320
T1ðsÞ
�� ��

2
pg1;� �
(2)
 TlðsÞ� �
G
p1; l ¼ 2; 3; 4;
(3)
 All the eigenvalues of ĀðlÞ lie in the region (�38,�2).
By solving the convex optimization problem (58) in the MATLAB environment [26], we have
g�1 ¼ min T1ðsÞ

�� ��
2
¼ 2:7256m=s2, and the associated matrices are as follows (for brevity, here we

only list the matrices that are necessary for the construction of the admissible controllers):

P̄1 ¼

0:0030 �0:0002 �0:0095 �0:0034

�0:0002 0:0002 0:0006 �0:0030

�0:0095 0:0006 0:0311 0:0038

�0:0034 �0:0030 0:0038 1:0277

2
6664

3
7775,
le 1

meters of the quarter-car model

ks cs ku mu

kg 18,000N/m 1000Ns/m 200,000N/m 40 kg
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P̄2 ¼

0:0046 �0:0001 �0:0141 �0:0026

�0:0001 0:0002 0:0008 �0:0032

�0:0141 0:0008 0:1038 0:0027

�0:0026 �0:0032 0:0027 0:9664

2
6664

3
7775

K̄1 ¼ 51:2114 �1:5133 �160:3566 �393:0366
� �

,

K̄2 ¼ 58:1277 �0:6991 �243:2434 �263:5746
� �

.
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Therefore, the gain matrix function for an admissible load-dependent controller is given by

KðmsÞ ¼
X2
i¼1

aiK̄ i

 ! X2
i¼1

aiP̄i

 !�1
, (60)

where

a1 ¼
1

ms

�
1

320þ l̄

� ��
1

320� l̄
�

1

320þ l̄

� �
,

a2 ¼
1

320� l̄
�

1

ms

� ��
1

320� l̄
�

1

320þ l̄

� �
. ð61Þ
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Fig. 3 depicts the eigenvalues of the open- and closed-loop systems in the complex plane, from
which we can see that the designed controller renders the poles of the closed-loop system to lie
inside the expected region. The H2 norms of the transfer function T1ðsÞ for different l in the
admissible interval lj j � l̄ are shown in Fig. 4. It can be seen from this figure that for all
admissible parameter l, we have T1ðsÞ

�� ��
2
og�1 ¼ 2:7256m=s2. In addition, TlðsÞ

�� ��
G
; l ¼ 2; 3; 4

for different admissible l are also presented in Figs. 5–7, which clearly show TlðsÞ
�� ��

G
o1.
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of closed-loop system versus parameter l.
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As is mentioned in the above section, the controller gain matrix function (60) is in fact a
nonlinear function in terms of the parameter l. In order to see clear the relationship between
KðmsÞ and l, Fig. 8 depicts the four components of KðmsÞ for different l.
Fig. 9 shows the open- and closed-loop frequency responses from the ground vertical velocity

_zrðtÞ to the body acceleration €zsðtÞ. From this figure we can see that the closed-loop system has a
significant reduction in amplitude when compared with the open-loop system, especially for the
frequency band (4–8Hz), in which the human body is more sensitive to vertical vibration.
Therefore, the ride comfort has been improved significantly under the designed load-dependent
controller.
Now assume the disturbance input from the ground oðtÞ to be zero-mean white noise with

identity power spectral density (shown in Fig. 10). Fig. 11 shows the body accelerations of the
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Fig. 9. Frequency response of open- and closed-loop systems from ground velocity _zrðtÞ to body acceleration €zsðtÞ

(l ¼ �64; 0; 64).
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Table 2

Obtained minimum T1ðsÞ
�� ��

2
(comparing results with Ref. [18])

l̄ (kg) 32 64 96 128 144

Our method (m/s2) 2.2608 2.7256 3.4386 4.5863 5.4659

Ref. [18] (m/s2) 2.5739 3.2689 4.2967 5.9526 Infeasible

H. Gao et al. / Journal of Sound and Vibration 290 (2006) 654–675 671
open- and closed-loop systems, from which we can see the effectiveness of the designed load-
dependent controller (in this figure, the solid line, dashed line and dotted line represent the case
l ¼ �64, l ¼ 0 and l ¼ 64, respectively).
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Finally, a comparison between the load-dependent controller design and the constant controller
design presented in Ref. [18] is carried out. Table 2 lists the obtained minimum H2 norm of T1ðsÞ
for different l̄. It can be seen that under the same conditions, the load-dependent controller
approach can yield much less conservative designs than the constant gain approach. Notably for
l̄ ¼ 144 where the constant controller method fails to find feasible solutions, our load-dependent
approach is still able to provide desired controllers. To highlight the benefit of the load-dependent
controller design, in the following we will present some computer simulations. To this end, we still
assume the disturbance input from the ground oðtÞ to be zero-mean white noise with identity
power spectral density (shown in Fig. 10). For l̄ ¼ 32, Fig. 12 presents the body accelerations of
the closed-loop systems by the load-dependent controller and the constant controller respectively;
for l̄ ¼ 64. Fig. 13 presents the body accelerations of the closed-loop systems by the load-
dependent controller and the constant controller, respectively. From these figures, we can see that
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Fig. 12. Vertical accelerations of closed-loop systems by different controllers for l̄ ¼ 32: (a) load-dependent controller;

(b) constant controller. ————, l ¼ �32; - - - - - - , l ¼ 0; . . . . . . , l ¼ 32.
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the load-dependent controller design yields better controllers than the constant controller design
approach.
5. Concluding remarks

A load-dependent controller design approach has been proposed to solve the problem of multi-
objective control of active suspension systems with uncertain parameters. This approach designs
controllers whose gain matrix depends on the online available information of the body mass based
on parameter-dependent Lyapunov functions. Compared with previous approaches that design
robust constant controllers, the proposed load-dependent approach can yield much less
conservative results. The usefulness and the advantages of the proposed controller design
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methodology are illustrated via simulations. Finally, it is worth mentioning that as only state-
feedback case is considered in this paper, future research effort can be directed at solving the
problem of output-feedback controller design (such as that considered in Ref. [12]), which is more
suitable for the case when some of the state variables are not measurable.
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